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1 Introduction

This document outlines the final results of a three year project entitled “Learning
in an Intentional System” carried out at The Institute for the Learning Sciences,
Northwestern University, with support from the Air Force Office of Scientific
Research (grant number AFOSR-91-0341-DEF). Further details may be found in
the references.

1.1 Project Goal and Basic Approach

The goal of the project, as outlined in the original proposal, was to carry out
research aimed at the construction of adaptive planning system that can learn in
response to planning failures, i.e., modelling learning to plan as a process of
debugging. Previous approaches to failure-driven learning, notably Sussman
(1975), have been based on a traditional models of planning, in which the planner
generates a monolithic, self-contained plan to be passed on to another module for
execution. Such approaches have thus focused on the process of debugging a
plan that has proven to be faulty during execution. However, such traditional
models of planning have increasingly come under attack, as it has come to be
recognized that planners operating in the real world must be reactive, changing
plans on the fly to cope with unexpected circumstances. In such a model, there
may be no single, monolithic plan that governs the systems behavior during
execution.

In response to this, we have focused on the issue of debugging the planner, rather
than debugging the plan. To use a simple analogy, we can regard the agent’s
behavior as the product of a complex set of interacting processes, like the output
of a factory. If the products turned out by a factory are unsatisfactory, then it is
the factory itself, and not simply the individual products, that shouid be fixed.
Similarly, if a planning agent’s behavior is judged unsatisfactory, it the planning
system itself that must be debugged.

In order to support this debugging process, we have chosen to apply the
paradigm of model-based reasoning (see, e.g., de Kleer, et al., 1977; Sussman and
Stallman, 19077; Davis, 1984). In this approach, a model of a complex system is
used as a basis for generating expectations for that systems behavior, pinpointing
faults when these expectations are violated, and generating repairs that will
correct the problem in the future. In order to apply model-based reasoning to the
task of debugging a planning system, it is thus necessary to create detailed,
explicit models of how that planning system functions. The construction of such
models has thus been the central focus of out research effort.




1.2 Project Structure

Our work is being carried out in the context of three related research projects:

* Model-based debugging: building planning systems that improve their
performance over time, e.g., Castle.

* Extending traditional planning models: building systems that handle
uncertainty and real-time planning and execution, e.g., Cassandra,
Pareto.

* Domain-independent design: Using models of user tasks as a basis for
design processes that create artifacts to support those tasks.

The first two of these project are well underway, and have produced significant
published results, as well as a number of prototype systems. The third project is
inits early phases. The remainder of this report will describe the contributions of
these projects in detail.

2 Adaptive Planning

Machine learning research has concentrated almost exclusively on how to learn—
that is, the learning system is focused on a particular, well-defined learning
problem by the researcher. The question of what to learn has thus been largely
ignored. The Castle system decides what to learn by analyzing observed failures
of its own plans, and implementing repairs. Determining what to change in
response to a failure depends on determining which component of the system’s
cognitive architecture is responsible for that failure. For example, when a chess
player fails to make a defensive move that would have avoided a costly capture,
analysis of the failure should distinguish, e.g., a failure to notice that the move
was possible (“Why didn’t I think of that?”) from a failure to realize that the
move was worthwhile (“I thought of that, why didn’t I do it?”).

Castle implements a failure driven, model-based approach to learning from
planning failures in the domain of chess. As part of its decision-making cycle,
Castle posts expectations about the outcomes of its plans. When an expectation
fails, the diagnosis process is invoked. The outcome of this process is an
identification of the underlying fault that caused the expectation failure. This is
used as an input to the repair module, which suggests an appropriate
modification to the decision-making apparatus to prevent the recurrence of such
a failure. Castle’s decision-making architecture is primarily concerned with the
detection of threats and opportunities, and the anticipation of possible opponent
plans.




2.1 Model-Based Diagnosis and Explanation-Based Repair

As described in the previous section, Castle’s learning process is triggered by
the observed failure of an expectation. When such a failure is observed, the
system must determine the underlying cause of this failure, in order to
generate an appropriate repair. In effect, the failed expectation is a symptom,
and Castle must diagnose the underlying disease. The knowledge necessary
to support this diagnosis process is captured in the form of justification
structures, which record the dependence of system’s expectations on its
assumptions—including in particular assumptions about the operation of its
own components stemming from its self-model. When an expectation is
violated, the system traces back through these justification structures to find
the faulty assumption(s) underlying the failed expectation. The basic
technology for the maintenance and analysis of such justification structures
was originally developed in support of model-based reasoning for devices
(see, e.g., de Kleer et al., 1977; Stallman and Sussman, 1977; Doyle, 1979;
Davis, 1984; Hamscher and Davis, 1984; Smith et al., 1985; Simmons, 1988).

The primitive assumptions that underlie Castle’s justification structures consist

of functional specifications of the components of its planning architecture—e.g.,

the assumption that a threat-detection component will identify every instance of

a particular class of threats. A completed diagnosis will thus involve the

identification of one or more components that failed to fulfill their functional
specifications.

Once Castle has identified such a failed assumption, it must then determine what
can be done to correct it. This involves, first, generating an explanation of why
the component’s specification should have applied to this case, and, second,
generalizing this explanation using EBL (see DeJong and Mooney, 1986; Mitchell
et al., 1986). The result of this process is a new rule that, when added to the
faulty component, prevents similar problems in the future.

2.2 Abstraction in Task Models

Castle’s diagnosis process depends upon it’s model of its own decision-making
architecture—that is, upon its cognitive model of its task. Maximizing the benefit
of the learning process requires that the system’s cognitive task models be
abstract enough to supply leverage across a wide variety of domains. In other
words, the cognitive model must be specified in terms of components that carry
out tasks that are not idiosyncratic to any particular domain, but rather play a
role in planning in general.

For example, consider the task of threat detection: The goal of threat detection is
to notice instances of threats against the system's goals early enough to be able to
counterplan against them, that is, to do something to prevent them from coming
to fruition. Thus the task entails, among other things, determining "perceptual”




features associated with instances of such threats, monitoring the environment for
the presence of such features, and notifying some decision-making authority
when such features are detected. At the next level of detail, determining an
appropriate set of features to be monitored entails discovering or generating
features that meet certain specifications: The features must arise early enough in
the course of a threat instance to enable the system to block the threat; they must
be reasonably diagnostic of threats of a given type, e.g., they must not present the
decision-making authority with too many false alarms; they must be reasonably
easy to detect; and so on.

The key thing to notice about the above description of the issues that arise in
threat detection is that it is entirely general in nature (Collins, Birnbaum,
Krulwich, and Freed, 1991). The concepts involved have nothing to do with
detecting threats in any particular domain: Rather they pertain to the task of
threat detection in general. This suggests that threat detection, and
counterplanning generally, is an aspect of planning behavior that is highly
dependent upon general planning and design knowledge. In particular, the
ability to modify threat detection behavior in order to successfully meet the
particular circumstances in which the planner finds itself depends crucially upon
such knowledge.

Consider the following example: A night watchman completes his rounds in a
certain period of time, say one hour. At some point during the night, he
discovers that while he was elsewhere on his rounds, one of the areas that he was
guarding has been successfully broken into by burglars, and valuable property
has been stolen. What should he do to prevent this from happening in the
future?

One obvious strategy he might follow is to speed up his rounds. The question of
interest here is, what makes this obvious? The answer lies in our general
knowledge about the monitoring sub-task in threat detection. Monitoring a
feature means focusing the planner's perceptual mechanisms on an area in which
a threat might arise and computing whether that feature is in fact present at that
time. Since we cannot in general afford to monitor all features continuously, we
must instead monitor them intermittently. The rate at which we monitor a given
feature must be a function of, among other things, the rapidity with which the
threat it predicts can be carried out: A threat that takes a long time to come to
fruition need only be checked for occasionally. On the other hand, a threat that
can be executed quickly must be monitored at short intervals, in order to ensure
that enough time remains after its detection to prevent it from being carried out.
Given this understanding of the situation, it can be seen that the speed with
which the night watchman makes his rounds is what controls the rate at which
threats are being monitored. Itis part of our general planning knowledge that if
threats are not being detected early enough, one possible repair strategy is to
increase the rate at which they are being monitored, which in this case means
speeding up the watchman’s rounds.




2.3 CASTLE Case Study

Consider the discovered attack, a classic chess maneuver in which the movement of
one piece opens a line of attack for another piece. Novices often fall prey to such
attacks, and the key point is that this is 1ot because they fail to understand the
mechanism of the threat, i.e., the way in which the piece can move to make the
capture. Instead, the problem appears to be one of attention: Novices simply fail
to consider new threats arising from pieces other than the one just moved. In
other words, the problem lies not in their ability to detect the given threat in
principle, but rather in their decisions about where to look for threats in practice.
In fact, without such a distinction—e.g., if the method for detecting threats
entailed scanning the entire board after each move—the problem of discovered
attacks, and the need to distinguish them from other sorts of attacks, would not
even arise. The model of threat detection described above reflects this distinction
by introducing a notion of focus rules that limit the application of threat-
detection rules. The former embody knowledge of where to look; the latter, of
what to look for. Our system is capable of learning both sorts of rules,
depending upon the cause of the failure in a given situation.

The following example describes a scenario in which the system falls prey to a
discovered attack, and thereby learns to improve the attention-focusing portion
of its threat detection component. The system’s opponent starts by advancing
one of its pawns one square. This opens a discovered attack by the opponent’s
bishop on the system’s rook. However, because of overly restrictive attention-
focusing, the system fails to notice this threat, despite the fact that it has a threat
detection rule which, if applied to the appropriate portions of the board, would
have in fact detected the threat. The system chooses instead to capture the
opponent’s pawn with its knight, leaving the threat on the rook unaddressed.
The opponent carries out the threat and captures the rook.

Let's examine the system’s decision-making in some detail. Any decision to
make a particular move must be based upon some assessment of how well that
move compares to the available alternatives. Such a comparison, in turn,
depends upon the ability to project the implications of each alternative
considered. Once an alternative is selected, relevant aspects of the projection
made in service of that choice become, in effect, predictions about the future
course of events upon which the rationality of the system’s chosen action
depends. These predictions, in turn, depend upon assumptions stemming from
the system’s self-model, for example, the assumption that its threat detection
component is capable of detecting all outstanding threats. In response to the
failure of one of these predictions, the system will attempt to determine which
aspect of its decision-making process was at fault, as described above.

In this particular case, the failed prediction is that capturing the opponent’s
pawn would be of greater value than blocking any extant threat. When the




opponent takes the system’s rook, this prediction is seen to have failed. The
justification structure underlying the failed prediction is roughly the following:
The system believes that no such threat exists because it has not detected such a
threat and it assumes that it can detect all threats. The latter assumption, in turn,
is justified by the assumption that there is a threat rule capable of detecting any
given threat, and the assumption that the threat rules have been evaluated using
appropriate bindings. Finally, the latter is justified by the assumption that the
system’s focus rules have generated the appropriate bindings. This justification
structure, and the assumptions it contains, are derived from the model of threat
detection described above.

There are two components that might be at fault in this case: the threat rules, and
the focus rules. Determining which component is at fault means exonerating all
of the alternatives. In this case, the reasoning involved turns on the model’s
assumption that the use of attention focusing is not degrading the system’s
ability to detect threats. Recall that in our model, attention focusing is
implemented by using focus rules to restrict the range of bindings over which
threat rules will be evaluated. Thus, the assumption that the focus rules are not
degrading performance amounts to the assumption that this limitation on the
bindings of the threat rules will not prevent the detection of any existing threat,
i.e., that any threat that can be detected by the threat detection rules without
limiting their bindings in this way can also be detected when the limitations
imposed by the focus rules are enforced.

Applied to our current example, the instantiated form of this assumption states
that if the threat to the rook could have been detected at all, it could be detected
with the focus rules in force. Attempting to fault this assumption means
attempting to show its negation, namely that the threat to the rook could have
been detected by the threat detection rules in principle, but could not be detected
in practice because the threat lay outside of the range delimited by the focus
rules. Since both of these are in fact true in this case, it can be concluded that the
assumption in question is faulty, and that the problem therefore lies in the focus
rules.

The repair for this fault is generated by retrieving the specification of the
focusing component (which in effect described what a focusing rule is meant to
do), and using this specification as a goal concept for EBL. The outcome of this
generalization process is a new focusing rule for discovered attacks, which is
added to the existing set of focus rules.

2.4 Castle Results

The Castle system can currently handle a set of examples that include a number
of the classic chess tactics that novice players must learn, including:

* Interposition
* Running away




* Counterattacking
* Discovered attacks
® En passant

e Fork

* Pin

* Boxing in

We have analyzed several additional examples, but have not yet encoded the
knowledge necessary to allow Castle to handle them. These are:

® Buying time

* Pawn line defense

¢ Sacrifice

* Midboard domination

Our experience with Castle demonstrates that abstract task models can be
successfully applied in adaptive planning systems. An important lesson
learned in this work is the importance of representing design rationale in task
models. While Castle can represent the way in which components fit together
to carry out a task, global considerations (e.g., efficiency) are not currently
taken into account. In addition, although the competitive games domain has
been useful in building our technological base, further progress depends
crucially upon moving to a more realistic task domain. In order to address
this, we have recently begun a new project to study model-based approaches
to design, including in particular adaptive interfaces. This work is described
in section 4, below.

3 Extending Traditional Models of Planning

Models of planning and plan execution play a pivotal role in our research
program. Unfortunately, traditional models of planning have been extremely
limiting in their assumptions about the planning domain, largely ignoring,
among other issues, the problems of coping with uncertainty and planning in
real time. In parallel with our work on Castle, we have pursued a project to
extend the traditional models of planning. This project has resulted in the
development and implementation of two planning systems, Cassandra and
Pareto.

3.1 Contingency Planning: Cassandra

Cassandra is a planning system that is capable of building contingency plans in
the face of uncertainty. Cassandra is a modified classical planner that can
constructs such plans automatically. Cassandra’s algorithm is based on the
current generation of “classical” planners (e.g., Tweak, SNLP, UCPOP), which




combine elegant algorithms with nice formal properties: completeness,
correctness, and systematicity. Unlike standard classical planners, however,
Cassandra allows the representation of uncertainty in both the domain and its
operators, and the generation of contingency plans to cope with uncertainty.

Our work on Cassandra has produced a number of important research
contributions, in particular:

* Cassandra was the first partial-order planner to incorporate Pednault-style
secondary preconditions.

* We have developed and implemented a simple and natural representation
for uncertain effect in a classical planning framework.

* We have developed and implemented a representation for decisions steps
and an algorithm for automatically adding such steps to contingency
plans.

* Wehave developed and implemented a label-propagation scheme to carry
out the bookkeeping necessary to keep track of plans with arbitrary
numbers of contingency branches.

3.1.1 Overview

Many plans that we use in our everyday lives specify ways of coping with
various problems that might arise during their execution. In other words, they
incorporate contingency plans. The contingencies involved in a plan are often
made explicit when the plan is communicated to another agent, e.g., “try taking
Western Avenue, but if it’s blocked use Ashland,” or “crank the lawnmower once
or twice, and if it still doesn’t start jiggle the spark plug.” So-called classical
planners cannot construct plans of this sort, due primarily to their reliance on two
perfect knowledge assumptions:

1. The planner will have full knowledge of the initial conditions in which the
plan will be executed, e.g., whether Western Avenue will be blocked.

2. All actions have fully predictable outcomes, e.g., cranking the lawnmower
will definitely either work or not work.

By effectively ruling out uncertainty, these assumptions make it impossible even
to represent the notion of a contingency plan within a strictly classical
framework. While these assumptions simplify the planning process, it is
dangerous to make such assumption in general, since they may lead the planner
to forgo options that would have been available had potential problems been
anticipated in advance. For example, on the assumption that the weather will be
sunny, as forecast, one may neglect to take along an umbrella; if the forecast later




turns out to be erroneous, the umbrella option will no longer be available. When
the cost of recovering from failure is high, failing to prepare for possible
problems in advance can be an expensive mistake. In order to avoid mistakes of
this sort, an autonomous agent in a complex domain must have the ability to
make and execute contingency plans.

Our work is embodied in the Cassandra program. Cassandra is a contingency
planner that has a number of advantages over previous systems, including the
following:

* A single mechanism handles both uncertainty due to incomplete
knowledge and that due to unpredictable outcomes.

* The circumstances in which it is possible to perform an action are
distinguished from the circumstances in which it is necessary to perform it.

* The plans constructed by Cassandra mclude specific steps to decide what
contingencies are applicable.
Information gathering steps are distinct from decision steps.
Information gathering steps may have preconditions.

* Cassandra constructs a single plan that allows for all contingencies, rather
than constructing separate plans that must later be merged.

For an example of the sort of plan that Cassandra constructs, consider a plan in
which a delivery robot must pick up a package, in a situation in which the
location of the package is not known at planning time. The resulting plan will
involve a decision step, with some set of actions taken to achieve the knowledge
preconditions of that decision step, i.e., to determine in which location the
package is to be found. The decision discriminates between two possible
subplans, each of which is correct given one possible package location.

Below is Cassandra’s output for the package pickup example. Step 1 in
Cassandra’s plan determines the location of the box, while step two decides
which subplan to execute based on the result of executing step 1. Cassandra
encodes subplans using labels, e.g., [LOCO0S: B]. Once a decision has been made,
only steps that bear the label associated with that decision are executed.




Injtial: (AVAILABLE CAR-1)
When [LOCO0S: B] (PACKAGE-AT LOCATION-2)
When [LOCO0S: A (PACKAGE-AT LOCATION-1)

Step 1(2): (ASK-ABOUT-PACKAGE)

Step 2(1): (DECIDE LOC0S)
(and (PACKAGE-AT LOCATION-2)

T ) => [LOCOS: B)
(and (PACKAGE-AT LOCATION-1)
T ) =>[LOCOS: A)
Step 3(4): (DRIVE CAR-1 LOCATION-1) YES: [LOCOS: A)
Step 4(3): (DRIVE CAR-1 LOCATION-2) YES: [LOCO0S: B]
Goal: (AND (AT ?LOC) (PACKAGE-AT 7LOC))
GOAL YES: [LOCO0S: B]
4 -> (AT LOCATION-2)
0-> (PACKAGE-AT LOCATION-2) NO: [LOCOS: A]
GOAL YES: [LOCOS: A]
3-> (AT LOCATION-1)
0 -> (PACKAGE-AT LOCATION-1) NO: [LOCOS: B]

Complete!

Cassandra's solution to the package problem

3.1.2 Cassandra’s representation scheme and algorithm

Representation scheme: definitions

A plan step S represents an action. It may have enabling preconditions EP. It has
at least one effect E. It is the instantiation of an operator O.

A plan step may be a decision step D. A decision step has enabling preconditions
EP. Each enabling precondition is of the form (know-if C) for a condition C. D
also has decision rules DR.

An effect E represents some results of an action. It is attached to a step S,
representing that action. It may have secondary preconditions SP. It has at least
one postcondition C, a condition that becomes true as the result of executing S
when SP hold.

A link L represents a causal dependency in the plan, specifying how a condition
C is established by an effect E, which has C as a postcondition.

E has secondary preconditions SP and is a result of step S. The condition C is one
of:

An enabling precondition of a step ES;
A secondary precondition of an effect EE that’s a result of step ES;

* The negation of a secondary precondition ESP of an effect EE that's a
result of step ES, thus preserving link EL.




A link L is unsafe in a contingency CT in which it is required if there is a
clobbering effect CE with postcondition CC resulting from step CS such that:

* Either CC can unify with G;

Or C is of the form (know-if KC), and CC can unify with KC;
* Step CS can occur between steps S and ES;
¢ Effect CE can occur in contingency CT.

An open condition OC (an unachieved subgoal) is represented in Cassandra as
an incomplete link, missing the information about the effect E that establishes it.
The condition C is required to be established because it is one of:

An enabling precondition of a step ES.

* A secondary precondition of an effect EE that’s a result of step ES.

* The negation of a secondary precondition ESP of an effect EE that's a
result of step ES, thus preserving link EL.

Plan bindings (codesignation constraints) specify the relationships between
variables and constants. The following relationships are possible:

Two variables may codesignate;

A variable may designate a constant;

A variable may be constrained not to designate a constant;
Two variables may constrained not to codesignate.

An ordering constrains the order of two steps with respect to each other, so that
step S1 must precede step S2 (S1 < 52).

Every step, effect and open condition in a partial plan has two sets of
contingency labels attached to it. In the interests of brevity, we also refer to the
labels of a link L; in this case, we mean the labels of the step ES or effect EE that L
establishes.

Each contingency label has two parts: a symbol representing the source of
uncertainty, and a symbols representing a possible outcome of that source of
uncertainty. Positive contingency labels denote the circumstances in which a
plan element must or will necessarily occur; negative contingency labels denote
the circumstances in which a plan element cannot or must not occur.

Contingency labels must be propagated through the plan. In general, positive
contingency labels are propagated from goals to the effects that establish them,
while negative contingency labels are propagated from step to their results. The
details are as follows:




¢ Astep S inherits the positive labels of the effects that result from it;
A step S inherits the negative labels of the effects that establish its enabling
preconditions;

* Aneffect E inherits the positive labels of the steps whose enabling
preconditions it establishes;

* Aneffect E inherits the positive labels of the effects whose secondary
preconditions it establishes;

* An effect E inherits the negative labels of the step from which it results;

* An effect E inherits the negative labels of the effects that establish its
secondary preconditions;

* Anopen condition OC inherits the positive labels of the step or effect that
it is required to establish.

Algorithm

The planning process starts by constructing a partial plan consisting of two steps:
* Aninitial step IS with no preconditions and with the initial conditions as
its effects;
* A goal step GS with no effects and with the goal conditions as its enabling
preconditions.

This plan is added to the (initially empty) list of partial plans PQ. Planning then
proceeds as follows:

Plan(P, Q)
~ 1 Choose a partial plan P from PQ;

2 If Pis complete, then finish;

3 If thereis an unsafe link UL,
Do resolve(P, UL) and add the resulting plans to PQ;
Return to step 1;

4 If there is an open condition OC,
Do establish(P, OC) and add the resulting plans to PQ;
Return to step 1.

It now remains to describe how threats to unsafe links are resolved and how
open conditions are established.

Resolving threats to unsafe links

We denote by CB the extra bindings (if any) that are required in order for C and
CC to unify, and by CCT the contingencies (if any) in which the link L is unsafe.
Threats are resolves as follows

Resolve(P, L)

1 Initialize a list PPL;
2 IfCBis non-empt{r
Make each possible modification to the bindings of P that ensures that C and CC cannot unify
Add each resulting partial plan to PPL;
3 If step CS can precede step S
Add an ordering to ensure that CS precedes S
Add the resulting partial plan to PPL;




4 Ifstep ES can precede step CS
Add an ordering to ensure that ES precedes CS
Add the resulting partial plan to PPL;
5 Prevent effect C Eg occurring in each contingency CT in CCT by either
5a Add the negation of its secondary preconditions CSP as an open condition with positive
contiré%'ency label CT
5b Add CT to the negative contingency labels of step CS
5c¢  Add CT to the negative contingency labels of effect EE or step ES
If appropriate modify the relevant decision rule as discussed in section 4.2.5.
Add orderings to ensure that step CS occurs between steps S and ES
Progagate labels as appropriate.
Add each resulting partial plan to PPL;
6  Return PPL.

The methods shown in steps 2, 3, and 4 are standard methods found in SNLP and
UCPOP; they are often termed separation, demotion, and promotion respectively.
The method shown in step 5a is a modification of a standard method found in
UCPOP and other planners that use secondary preconditions. Essentially, the idea
to prevent an effect from occurring by ensuring that the context in which it
occurs cannot hold.

We say that the methods in step 5 disable the threat; the methods in steps 5b and
5c are specific to a contingency planner. The methods in steps 5a and 5b ensure
that the threatening effect does not occur in a given contingency; the method in
step 5c notes that the established step or effect cannot occur in a given
contingency. If any of these techniques result in inconsistent labeling of any plan
element (so that, for example, it cannot occur in every contingency in which it is
required) the resulting partial plan is abandoned, as it represents a dead end in
the search space.

Establishing open conditions

The procedure is usedas follows:




Establish(P, OC)
1 Initialize lists PPL and PPUL;
2 Ifthe ogen condition is not of type unknown
For each effect E resulting from a step S in P
If E can occur in eve conhr,\;gency in which OC must be established
and if E can precede ES or E
and if there is a postcondition C’ of E that can unify with condition C
Complete the link OC by using E as the establishing effect
Add the resulting partial plan to PPL;
3 If the open condition is not of type unknown
For each operator O with an effect E with a postcondition C’ that can unify with C
Instantiate a new step S
Complete the link OC by using E as the establishing effect
Add the enabling preconditions EP of S as open conditions
Add the resulting partial plan to PPL; ‘
4  For each plan in PPL
Add an ordering to ensure that S precedes ES
Add the bindings necessary to ensure that C’ unifies with C
Add the secondary preconditions SP of E as open conditions
Propagate labels as appropriate;
5 If the open condition is of type unknown with source of uncertainty U and outcome O
Add a new decision step S for uncertainty U
If U is a new source of uncertainty in the plan, add new top-level goals as open conditions
with the appropriate labels
Add the resulting partial plan to PPUL;
6  If the open condition is of type unknown with source of uncertainty U and outcome O
Find an existing decision step S for uncertainty U
Add the resulting partial plan to PPUL;
7  For each plan in %EUL
Modify the decision rule for O to include C as an antecedent
Add (know-if C) as an open condition required to establish S
Add orderings to ensure that S precedes ES
Propagate labels as appropriate
8  Return PPL and PPUE.

Steps 2 and 3, taken with step 4, show the methods of adding a new step and
reusing an existing step; they are essentially the methods used in UCPOP
extended to reflect the need to check and propagate contingency labels. Steps 5
and 6, together with step 7, show methods of adding a new decision or reusing
an existing decision that are specific to Cassandra.

3.2 Opportunistic Planning: Pareto

The Pareto project is aimed at the construction of planning systems that can take
advantage of unforeseen opportunities discovered during plan execution. The
Pareto system combines the features of deliberative planning and reactive
execution—that is, it is able to react quickly to take advantage of opportunities
that are presented in real time, but it is also able to reason in depth about the
utility of pursuing a particular opportunity when this is warranted.

Pareto operates a delivery truck in a simulated environment created using
Truckworld (Firby and Hanks). Its interface appears as follows:
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Pareto can carry objects in its bays, and can perceive objects in its immediate
environment (in this case, Tool Depot 2). Pareto’s task is to deliver required
items to construction sites. A map of Pareto’s world is as follows:
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3.2.1 Overview

We can make the following observations about the problem of planning in time-
pressured situations:

e Most of the effort in planning lies in the analysis of potential interaction
between subplans.

e In well-structured environments, common plans can generally be assumed to
be effectively independent.

e Detailed analysis to spot exception is costly; in time-critical situations, it can
cause opportunities to be missed.

Traditional planning systems assume interactions between subplans, then reason
exhaustively to either demonstrate that they will not arise, or to produce a
modification of the plan that will avoid them. Pareto reverses this by assuming
that subplans will not interact. Pareto performs a heuristic analysis process to
spot situations in which problematic interactions are likely. In such situations,
Pareto performs a more detailed analysis similar to traditional planners;
otherwise, it is assumed that harmful interactions will not arise.

3.2.2 PARETO’s Architecture

In order to perform an action an agent must specify the details of its execution.
For example, in order to grasp an object the agent must know how wide its hand




must be opened and where the hand should be positioned so that closing the
hand will make it grip the required object. Unfortunately, in an unpredictable
world it is impossible to determine at the time that a plan is constructed exactly
what the situation will be when the actions in it come to be executed. to return to
a previous example, suppose you have a goal to make a bowl of cereal. Part of
this plan will include actions to take a cereal bowl out of the cupboard, which
involves grasping the bowl. At the time you decide to make a bow! of cereal you
cannot possibly tell exactly where the bowl will be in the cupboard and exactly
where you will be standing when you try to grasp the bowl. This information
about the current state of the world can only be acquired as the plan is executed.

An agent in an unpredictable world must thus reconcile the impossibility of
constructing plans that specify every detail of the actions to be performed with
the need to specify the details of actions so that they may be actually executed. It
is the job of the plan execution system to perform this reconciliation by turning
incompletely specified plans into specific instructions that can be used to control
the hardware that actually performs actions in the world. As described by Firby,
the RAPs plan execution system is intended to serve as the middle level of the
three level control architecture shown below.
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3.2.3 Reference Features

At the heart of Pareto’s ability to quickly spot potentially problematic plan
interactions is its use of reference features. By associating these features with
common elements in its planning domain, Pareto can use the reference features
applicable in a given situation as indices to known plan interactions. This
process, in turn, can be used as the basis of a filter that identifies those situations
in which more analysis should be performed:

Potential
opportunities Goals

\

FILTER . No
interactions
|
Potential
intera;tions
ANALYSIS . No
interactions
Genuine
interactions

Reference features can be thought of as compiled knowledge about standard
interactions. Reference features label important functional properties of object
and other situational elements, e.g., sharp, fragile, heavy. These features
summarize typical categories of interactions that particular types of objects
participate in, e.g., cutting, breaking, etc. Reference features thus compile the
results of previous observation and analysis; as such, they provide a basis for
inexpensively analyzing situations for potential interactions. The table below
shows some of the generally applicable reference features that we have
identified.




Surface interac- smooth 'Load-bearing flimsy Containment bulky

tions: slippery interactions: sturdy interactions: dense
sticky tough tiny
rough heavy large
gritty light small
greasy soft big
dull hard sheetlike
shiny solid stringlike
glossy hollow

container

Cutting interac- sharp Breaking: brittle Deformation: rigid

tions: blunt fragile flexible
soft robust elastic
hard delicate bouncy

ITiquid interac- imperm-eable | Temperature: hot Vision and light: transparent

tions: perm-eable cold translucent
absorbent frozen solid
viscous .

Use as tools: round (cylind-| Tasks and urgent Stability: stable
rical) plans: fiddly unstable
prying robust precarious
pointed time-consum- balanced
graspable ing lopsided

Motion: flat Miscellaneous:  valuable
barrier worthless

Some reference features

4 Current and Future Work: Model-Based Design

The most important product of our research effort has been the development of a
methodology for producing explicit models of complex planning tasks. Our
purpose in developing this methodology has been the support of adaptive
planning systems. However, such task models can also play a critical role in
design support systems. We have thus begun to investigate the construction of
model-based design systems.

4.1 ASK 'Bert

The most obvious way in which our work on adaptive planning transfers to
design is in the creation of adaptive design systems, that model the design
process as a series of tasks, and support failure-driven learning techniques that
can support the adaptation of designs in response to observed failures of artifacts
to meet their design goals. A step towards such a system is one that supports a
human designer in the process of finding repairs for faulty designs. The ASK




Bert system, which is being built in Mosaic, and will shortly be available on the
World Wide Web, uses vocabulary derived from an abstract model of the process
of engineering design to index cases of known repairs for particular design flaws.
ASK Bert thus combines our work on task modeling with case-based reasoning to
produce a tool that can support design debugging across a broad spectrum of
engineering domains. Currently, the application contains over one hundred
engineering design cases, indexed under such problem categories as excess
capacity, insufficient capacity, complexity, by-products, failure, and inflexibility.

4.2 Model-based Interface Design and Adaptive Interfaces

Despite the critical importance of human interfaces in the design of effective
performance support systems, current interfaces are frequently arcane and
difficult to use. At the same time, because the design of these interfaces depends
upon ad hoc analyses of the tasks at hand, each interface must be hand-crafted to
meet idiosyncratic requirements, a labor-intensive process that is all too often
carried out by programmers who lack the necessary expertise. One promising
approach to improving the interface design process is the construction of design
aids that incorporate explicit, standardized models of the user tasks supported
by the system.

To illustrate the rationale behind such an approach, consider the Sickle Cell
Counselor (SCC), a system we have developed at ILS to teach visitors to the
Museum of Science and Industry in Chicago about Sickle Cell anemia by
allowing them to play the role of a genetics counselor to couples who may be at
some risk of passing the disease on if they have children. A user of SCC is
primarily engaged in an investigation task, and the system’s interface has been
carefully crafted to support the user in carrying out that task, e.g., by posing
queries, running tests, and weighing evidence. The key observation underlying
our approach is that many features of SCC’s interface design would be equally
appropriate in supporting other investigative tasks as well—if the commonalities
could be identified and represented explicitly. We have begun to investigate the
construction of interface design tools that, by incorporating explicit, standardized
task models, would permit interface designers to access and incorporate such
common task-relevant features into interfaces under construction simply by
specifying the functionality of the underlying system.

It is clear that, to the extent that any software system is capable of carrying out
essential interface functions at appropriate times, its design reflects some model
of the user’s task. In current interface design practice, however, this model is
nowhere explicit in the operation of the interface itself, and is rarely even made
explicit in the design process. Typically, a good interface design is the result of a
skilled human designer relying on his or her intuitive knowledge of the task in
order to make the interface do the right thing at the right time. Because of this,
the current state of the art in interface design is such that every interface is
custom designed and built, and its quality is totally dependent on the skill of the




interface designer. Interfaces are thus time-consuming and costly to construct.
The result, all too often, is that insufficient resources are allocated to the interface
design process, with the consequence that the overall system is difficult to

understand and use.

As with any other engineering design process, improvement in the design
methodology for interfaces depends, in large part, upon making explicit what
has previously been implicit. To the extent that interface designs depend upon
implicit models of the user’s task, it is impossible to standardize the creation of
such designs. This in turn makes it difficult to communicate and teach the design
principles involved, or to automate aspects of the design process. The result is
that interface design remains an expensive bottleneck.

Our approach aims to overcome the limitations of current technology through
the use of explicit, standardized task models. We are developing a library of such
models formulated in terms of a well-defined modeling language. These models
capture common knowledge about basic cognitive tasks such as information
gathering, process monitoring, fault diagnosis, event tracking, scheduling, prioritizing.
We believe that it is possible to accurately describe most complex real world
tasks as combinations of such basic cognitive tasks. In particular, we believe that
a library consisting of a manageable number of models of these basic tasks will
provide interface designers with a basis for modeling most real-world tasks that
their systems are intended to support.

The task model libraries we are constructing will make it possible to associate
standard interface objects and code templates with standard models of such
tasks. In other words, our approach to interface design is one in which the
interface designer’s ad hoc concept of the task will be replaced by an explicit,
well-defined specification, which will be used in the creation of interfaces that
can support this task.
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